Kalfree Only
LESSON 2
Use Gaussian elimination to find the complete solution to the system of equations, or state that none exists.
3x – 2y + 2z – w = 2
|
||||||||||||||||||
Solve the system of equations using matrices. Use Gauss-Jordan elimination.
3x – 7 – 7z = 7
|
||||||||||||||||||
Find the product AB, if possible.
A =
|
||||||||||||||||||
Use Cramer’s rule to solve the system. 2x + 4y – z = 32 x – 2y + 2z = -5 5x + y + z = 20
|
||||||||||||||||||
Find the products AB and BA to determine whether B is the multiplicative inverse of A.
A = , B =
|
||||||||||||||||||
Let A =
and B = . Find A – 3B.
|
||||||||||||||||||
Find the inverse of the matrix, if possible.
A =
|
||||||||||||||||||
Let B = [-1 3 6 -3]. Find -4B.
|
||||||||||||||||||
Evaluate the determinant.
|
||||||||||||||||||
Give the order of the matrix, and identify the given element of the matrix.
; a12
|
||||||||||||||||||
Find the product AB, if possible.
A = , B =
|
||||||||||||||||||
Use Gaussian elimination to find the complete solution to the system of equations, or state that none exists.
x + y + z = 9
|
||||||||||||||||||
Find the products AB and BA to determine whether B is the multiplicative inverse of A.
A =
|
||||||||||||||||||
Solve the matrix equation for X.
Let A =
|