Load Flow
In reference to the power system reactance diagram, all values are given in pu. Determine the followings:
- Construct the bus admittance matrix for the power system shown in Fig. 1
- Use Gauss-Seidel method to solve the load flow problem
Table 1: Impedances and line charging (in p.u.) for the system shown in Fig.1
Bus code p-q |
Impedance |
Shunt admittance |
1-12 |
0.02+j0.16 |
j0.03 |
1-4 |
0.015+j0.12 |
j0.024 |
1-3 |
0.015+j0.13 |
j0.024 |
1-2 |
0.03+j0.25 |
j0.031 |
12-11 |
0.025+j0.20 |
j0.021 |
12-5 |
0.016+j0.09 |
j0.015 |
12-4 |
0.016+j0.10 |
j0.015 |
2-8 |
0.06+j0.60 |
j0.04 |
3-8 |
0.03+j0.28 |
j0.04 |
3-4 |
0.018+j0.16 |
j0.03 |
4-5 |
0.014+j0.1 |
j0.03 |
4-9 |
0.008+j0.065 |
j0.012 |
9-8 |
0.045+j0.40 |
j0.038 |
9-7 |
0.02+j0.18 |
j0.025 |
9-6 |
0.04+j0.38 |
j0.036 |
9-10 |
0.035+j0.32 |
j0.034 |
8-7 |
0.045+j0.40 |
j0.042 |
7-6 |
0.045+j0.40 |
j0.042 |
6-10 |
0.015+j0.13 |
j0.020 |
Table 2: Bus data for the system shown in Fig. 1
Bus code |
Vinitial |
Pg |
Qg |
Pl |
Ql |
1(slack) |
1.0+j0 |
0 |
0 |
0 |
0 |
2 |
1.0+j0 |
0 |
0 |
0.66 |
0.26 |
3 |
1.0+j0 |
0 |
0 |
0.50 |
0.15 |
4 |
1.0+j0 |
0 |
0 |
0.54 |
0.16 |
5 |
1.0+j0 |
0 |
0 |
0.42 |
0.18 |
6 |
1.0+j0 |
0 |
0 |
0.64 |
0.28 |
7 |
1.0+j0 |
0. |
0 |
0.60 |
0.26 |
8 |
1.0+j0 |
0.68 |
|
0.18 |
0.06 |
9 |
1.02+j0 |
0.84 |
|
0.24 |
0.09 |
10 |
1.01+j0 |
0.97 |
|
0.20 |
0.05 |
11 |
1.01+j0 |
0.85 |
|
0 |
0 |
12 |
1.03+j0 |
0.72 |
|
0.12 |
0.03 |